Time-to-Event Data: A Different Angle by Population Evolution Charts And New Statistical Tests

Joachim Moecks¹ and Walter Koehler²

¹bioMcon GmbH, Mannheim, Germany and University of Mannheim ²baseline statistics GmbH, Frankfurt/M, Germany

the idea for population evolution charts came from.....

- A practical question: in a pool of studies with differing observation length, we observed a decrease in estimated hazard for CV disease in the later stage.
- Initially we had about 35% who reported preexisting heart disease at baseline – can we still compare this population with the one selected out by death after 3 years?
- After 3 years the hazard for CV disease seemed to be lower – may be all problematic patients already died?
- Finally we found that the proportion of patients reporting heart disease at baseline even slightly increased for the pool population after 3 years.

This was the beginning!

A slightly more formal setup ...

- Consider a random variable T for the event time
- Allow for censoring: a second rv C for timeto-censoring
- Assume covariates, known at baseline, either metric or categorial (binary)

Selection Processes

- The following groups/cohorts are considered: G(0) the initial group at time zero; the full group E(t) the group of patients with an event $\leq t$ Z(t) the group of patients with censoring $\leq t$
- Thus the available group G(t) at time t can be written: $G(t)=G(0) \div E(t) \div Z(t)$, where \div denotes set subtraction.
- o G(t) can be conceived to arise from G(0) by two selection processes, namely events and censoring.

Selection Processes: binary

Simple idea behind Population Evolution Charts (PEC)	
Cohort at baseline: $G(0)$	This cohort is reduced through events/censoring in the course of the study
Cohort at time t : $G(t)$	This cohort is at risk after the time <i>t</i> has elapsed
Binary covariate X e.g. sex	$P(X = 1) = \pi_1(0)$ the expectation at $t = 0$
Suppose <i>X</i> not related to events/censoring	Expect $P(X = 1) = \pi_1(t) = \pi_1(0)$
Suppose <i>X</i> is related to events/censoring	Expect $\pi_1(t) < \pi_1(0)$ or $\pi_1(t) > \pi_1(0)$
Define a simple PEC	Course of $\hat{\pi}_1(t)$, i.e. the proportion of $X = 1$ for the cohorts $G(t)$.
PECs come as graphics	PECs do not need difficult assumptions

Selection Processes Interpretation

Set up of the terminology for the case of binary covariates

Basic Notation

Basic Definitions	Random Variable T
Survivor Function $S(t)$	S(t) = 1 - F(t) = P(T > t)
Integrated Hazard $H(t)$	$H(t) = -\log(S(t))$
Density $f(t)$	$f(t) = \frac{d}{dt}F(t)$
Hazard $h(t)$	$h(t) = \frac{d}{dt}H(t) = -\frac{d}{dt}\log(S(t)) = \frac{f(t)}{S(t)}$

Define Population Evolution Chart (PEC)

PEC Base Definition	$P(X=1 \mid T>t)$
Usual regression considers	$P(T > t \mid X)$

Define Population Evolution Chart (PEC)

Equivalent Definitions of Population Evolution Charts (PEC) $\Psi_{\scriptscriptstyle X}(t)$	
I. Base Definition	$P(X=1 \mid T>t)$
II. PEC as selection process	$\frac{1}{S(t)} [P(X=1) - (1 - S(t)) \cdot P(X=1 \mid T \le t)]$
III. PEC in terms of subgroup survivor function	$\frac{S_1(t)}{S(t)}P(X=1)$
PECs come as graphics	PECs do not need difficult assumptions

Wait a moment

What about censoring?

 How to deal with it in the estimation of a PEC?

Estimate Population Evolution Chart

Estimation of Population Evolution Charts (PEC) The Censoring Problem	
Censoring C independent of T Consider all observed times $A = \min(T, C)$	$P(A > t) = P(T > t) \cdot P(C > t)$ $KM-estimates$ $\hat{P}(A > t) = \hat{P}(T > t) \cdot \hat{P}(C > t)$
Assumption: Covariate not related to censoring	Since $P(X = 1 A > t) = P(X = 1 T > t)$ Estimate $\hat{\Psi}_{I}(t) = \frac{1}{ G(t) } \sum_{j \in G(t)} x_{j}$ from all times
Using only assumptions for Kaplan-Meier estimates	$\hat{\Psi}_{II}(t) = \frac{\hat{S}_1(t)}{\hat{S}(t)} \cdot \overline{x}(0)$ Provides proper dealing with censoring times
Define a PEC for the censoring process – to check for selective censoring	$\hat{\Psi}_{C}(t) = \frac{\hat{P}(C > t \mid X = 1)}{\hat{P}(C > t)} \cdot \overline{x}(0)$
PECs come as graphics	PECs do not need difficult assumptions

All Estimates

For binary covariates Evolution Charts offer

- A simple graphical representation of dependencies
- Depicts time dynamics in an easy way
- Could also serve to check for selective censoring

Population Evolution Charts and Cox proportional hazard model

PEC & Cox

Studying Relation of a Binary Covariate with Event Times	
Standard Approach $P(T > t \mid X)$	Cox model $S(t \mid X = 1) = S(t \mid X = 0)^{\lambda}$ Crucial proportionality $h_1(t) = \lambda h_0(t)$
Population Evolution Chart $P(X = 1 T > t)$	No assumptions regarding the hazards
PECs come as graphics	PECs do not need difficult assumptions

PEC & Cox

PEC monotonic	A necessary condition for validity of the Cox model $\Psi_X'(t) = (1 - \lambda) \cdot h_0(t) \cdot \Psi_X(t) \cdot (1 - \Psi_X(t))$
PEC monotonic & Cox Model holds	Explicit hazard estimate is possible
PEC linear & Cox Model holds $\Psi_X(t) = \alpha \cdot t + \pi_1$	$h_0(t) = \frac{1}{1 - \lambda} \cdot \frac{\alpha}{(\alpha \cdot t + \pi_1) \cdot (-\alpha \cdot t + \pi_0)}$
results: $\pi_1 = 50.86\%$ $\alpha = 4.88 \frac{\%}{1000d}$ $\lambda = 3.24$	obtained from PEC obtained by linear regression PEC obtained from Cox regression

BIO-MATH-CONSULTING GERMANY

Estimate PEC by KM-method

Estimate explicit hazard

Survival Estimates

BIO-MATH-CONSULTING GERMANY

Heidelberg Nov 2012

For binary covariates Evolution Charts + Cox offer

- A simple check of the proportional hazard assumption (necessary condition: monotonic course of PEC)
- May be used to achieve explicit estimates of the hazard function

Testing options for Evolution Charts

Global Tests

Testing on constancy of Population Evolution Charts (PEC)
Binary covariate case: overall test

H₀: PEC overall constant Test variant 1

Test variant 2

 $\Psi_X(t) := P(X = 1 \mid T > t) = \text{const.}$ H0:

Equivalent to H0: $S_1(t) = S_0(t)$

Testing as usual e.g. by logrank test

Can be tested by the Wald-Wolfowitz **H₀: PEC overall constant**

H0: $\Psi_X(t) := P(X = 1 \mid T > t) = \text{const.}$

runs test

Warning: doesn't work with ties in the time variable!!

PECs come as graphics

PECs do not need difficult assumptions

Local Tests

Testing on constancy of Population Evolution Charts (PEC) Binary covariate case: local hypotheses	
H ₀ : PEC constant between t ₁ and t ₂	H0: $\Psi_X(t_1) = \Psi_X(t_2) = \Psi_X(t)$ $t_1 < t < t_2$
H ₀ : local	Testing: may be based on hypergeometric probability
H ₀ : PEC regarding CENSORING	Interchange the roles of event times <i>T</i> and censoring times <i>C</i>

Local Tests/Details

Testing on constancy of Population Evolution Charts (PEC) Binary covariate case: local hypotheses		
H ₀ : PEC constant between t ₁ and t ₂	H0: $\Psi_X(t_1) = \Psi_X(t_2) = \Psi_X(t)$ $t_1 < t < t_2$	
Assume: censoring and covariate independent	Testing: may be based on all times Use: hypergeometric probability But: compromised power	
Exact approach	Testing: based on event times conditioned on the censored times in the interval t1 to t2 But: complicated algorithm	
Approximate: Exact approach	Hyp. Prob1: #censor shifted to t1. Hyp. Prob2: #censor shifted to t2. Geom. mean of Prob1 and Prob2	

For binary covariates Evolution Charts offer....

 Global and local test opportunities to assess changes in the time dynamic

What to do with metric covariates

Define Evolution Chart for metric covariates

Definitions of Evolution Charts $\Psi_X(t)$	
I. Density Base	$f(x \mid T > t)$
II. Selection process	$\frac{1}{S(t)} \left[f(x \mid T=0) - (1-S(t)) \cdot f(x \mid T \le t) \right]$
PECs come as graphics	PECs do not need difficult assumptions

Difficulties

- How to follow up a conditional distribution over time graphically?
- Choose some property of the distribution and follow up over time - choices

Evolution Chart for Metric Covariates

Choices	
Take one or several quantiles of the distribution	Reduces the problem to the binary case Quantile Evolution Chart (QuEC)
Choose a moment of the	Moment Evolution Chart
distribution e.g. the mean	(MEC)
Estimate a MEC based on the selection process view	$\frac{1}{\hat{S}(t)} \left[\hat{\mu}(x \mid T=0) - (1 - \hat{S}(t)) \cdot \hat{\mu}(x \mid T \le t) \right]$
MECs come as graphics	MECs do not need difficult assumptions

For metric covariates Evolution Charts offer

- Cutoff-free representation of dependencies
- Time-dynamic is made obvious
- Can suggest potential cutoffs

Published PEC

- [1] Moecks J., Franke W., Ehmer B., Quarder O. (1997): Analysis of Safety Database for Long-Term Epoetin-β Treatment: A Meta-Analysis Covering 3697 Patients. *In: Koch & Stein (editors) "Pathogenetic and Therapeutic Aspects of Chronic Renal Failure"*. Marce Dekker: New York, 163-179.
- [2] Moecks J., Köhler W., Scott M., Maurer J., Budde M., Givens S.(2002): Dealing with Selective Dropout in Clinical Trials. *Pharmaceutical Statistics, Vol 1: 119-130*
- [3] Moecks J., Koehler W.(2007): Population Evolution Charts: A Fresh Look to Time-To-Event Data. *Statistical Computing and Graphics, Vol. 18, No 2, Dec 2007, p. 12-19*

Drop me a line to receive a better copy joachim.moecks@BIOMCON.com

thanks for your attention

