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Abstract: Time-to-event data analysis methods have a widgeraf applications. The classical
approach focuses on the survivor function, and @oyportional hazard regression when there
are covariates to assess. Population evolutiorishddress these data from a different angle, by
concentrating on the distribution of the covariatethe developing cohort over time. Covariates
that are related to the target events will showange in distribution over time. Population
evolution charts need less assumptions than thelata approaches. The present paper presents
definition and interpretation of this approach lbamary covariates. All conceptions and the
connection to Cox-regression are detailed andtititesd by real data from clinical trials.
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Introduction:

Time-to-event data (TTE data) is generated in nfeehgs of science and engineering. The
methodology for analyzing these data originatefénanalysis of life table records — hence calling
it ‘survival analysis’, whereas in more technicaiynded environments the same thing was called
‘analysis of failure-time-data’. We prefer the mowutral term ‘event’, however, the
methodology cannot deny its origin by consideringrmtities called ‘survivor function’ or ‘hazard’.
However named, this represents an emerging fieppfied statistics enjoying a wide range of
applications from social science, economy, qualitg reliability testing to medicine. Medicine
represents probably the largest area of applicatihere statistical TTE-analysis became a key
technology of data analysis, whether in epidemiplogin clinical trials. The methods considered
in this article were developed and motivated frdmical trials and will be illustrated by means of
those data, but may be applied in any other fi€[@l&-analysis.

In many clinical trials the success of therapesitiategies is described by time variables, e.qg.

“time to some clinical event” or “time to therapgsponse/cure”. In the field of serious diseases e.g
cancer, many studies consider clinical endpoikés‘time to disease progression”, “time to death
(overall survival, OS)”, or in combination, e.ginfie to progression or death (progression free
survival, PFS) “.The success of a therapy is evetuhy investigating the distribution of the

random variabld (time-to-event), through the survivor functi@ft) =1- F(t) = P(T >t) giving

the probability that the event occurs after t.

The survivor function as such is in most casesohptimary interest, but the relation of survival t
covariates, i.e. to compare the risk, e.g. for tigatment arms, for the two sexes, for a pre-exgsti
disease (yes or no), or for two groups definedngydutoff of a metric covariate, say. (There could
also be metric covariates — but we will concentoatdinary cases in this article).

Population Evolution Charts (PECs) conceive thiovolup of patients as a selection process
relative to the covariate distribution: supposstatly start (baseline) there are p% males in the
cohort. Whenever an event occurs a patient ledngesdhort i.e. is selected. If the selection of
males proceeds with a same base probability of yé6 thhe whole study duration, then the
selecting events are indifferent (unrelated) wabpect to the covariate. However, if systematically
more or less males than p% were selected them@orebf events and covariate can be assumed.
This simple idea behind the PEC may be writterttie imore formally:

Consider a binary baseline covarixtavith observationst; {01} wherej G (0), the studied

cohort at time=0 (baseline, start of the study). The initial coh@rf0) reducing it to somé&s(t gt
study timet. In order to investigate whether something changéu the cohort with respect to the

covariateX simply compare the fraction of those wXh1 at baselinex(0) = |G_](b)| ij with
i0G(0)

X(t) =|G—%t)| ij , the fraction of those wittX =1 for the remainder cohort at tinheA plot of

jG(1)
X(t) represents the basic Population Evolution CharC)PE the events are not associated with
the covariate, we expect a constant course of B R.e. the selection process selects
indifferently out of the two groups and thus wititrchange the composition. Systematic deviations
from constancy speak for an associatioX @fith the selection process, e.gxift) tends
downwards then those with =1 are at a higher risk respectively earlier rispéoceive an event.
It is an attractive feature of PECs that the assion and its time pattern can be studied without
any difficult assumptions.

Two examples of PECs from real clinical data avegiin Figure 1. The PEC for male percentage
indicates that sex is clearly related to the cargid events: after about 120 days of treatment the



percentage of males in the study population droglmeeh from 70% to 60%, the development
shows a clear monotonic trend (interpretations belistudied below). The green trace demonstrate
how a independence will show up in a PEC, hergvsigthis for a random covariate, which by
construction is not associated with the event times

In the PEC example, we have tacitly ignored thédj@m of censoring in time - to- event data, we
will come back to this in the estimation section.

Population Evolution Charts Figure 1: Population Evolution Chart
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Setting and Notation

To avoid any technical difficulties, we will assumnethe following that all studied quantities are
mathematically well behaved. Here are in briefrtten ‘coordinates’ of the standard time-to-
event terminology: The analysis is not based erdiktribution function, i.eF(t) = P(T <t put

rather makes use of the survivor functi@ft) =1- F(t) = P(T >t , giving the probability that
the event occurs after t. The ubiquitous quantity TE-analysis is the hazard functibt , )

describing the risk for an immediate event @nditional on survival up tb It can be obtained
from the survivor function together with the intatgd hazardH (t hs follows:

H (t) = —log(S(1))

h(t) =9/, H () =-9/, log(S(t) =%,

wheref (t }denotes the density @f(Kalbfleisch & Prentice, 1980, p. 6; Lee 1992, utea 2).

The standard approach for studying the influenceogériates is to consider the conditional
distribution of T i.e. P(T >t| X =1) and by fitting some (semi-)parametric model (€gx
proportional hazard model, Kalbfleisch & Prentickapters 4, 5).

In contrast, population evolution charts emphatieecovariate and take the opposite view to the
TTE-data: The PEC can be straightforwardly defias@ sequence of conditional probabilities:

(2) W () =P(X =1T >t)



The population evolution chart thus representgptiobability for X =1 for the survivors up to t.

The PEC was introduced as describing a selectiocegs — this is underlined by the following
derivation. Consider the distribution of the coate X at time 0 (baseline)P(X = 1The simple
identity

P(X =) =P(X =LT >t)+P(X =1T <t) ,
leads by elementary probability algebra to

P(X =1) =P(X =1|T >t)[P(T >t)+ P(X =1|T <t)[P(T 1),

By putting S(t) = P(T >t), the overall survivor function, we thus get:

2 WY, (1) =P(X=1|T >t) :%[p(x =1)- A-S(t) P(X =1T st)]
This underlines that the events can be conceivedlgxt out of the baseline distributi®{X = , 1)

leading to a time dependent composition of the fadjmn.
A further representation of the PEC can be direfctind from its definition as conditional
probability:

3) W () =P(X =1|T >t) = P(TP?Tt |>Xt)=1) P(X =1) :SSlT(tt))P(X =1)

Estimation

The well known complication of time-to-event dadahe fact that not all events are actually
observed, but the observation may terminatddatore an event occurred (censoring), e.g. due to
fixed administrative date for study end. For ceadasbservations it is only known that the event
did not occur up te. The well known answer to this issue are specitiates of the survivor
function, like the celebrated Kaplan-Meier graph.

In the case of no censoring, there is no estimattoblem and we simply proceed as indicated in
the Introduction. However, if there is some censprihen the cohoi®(t s not complete and
could miss some of those censored befpfer it is unknown whether they would have surdve
Censoring comes usually with assumptions e.qg.itlatandom or independent of the time
variableT. In most cases it is also customary to assumectretoring is not dependent on the
covariates, e.g. that any demographic properth@fiatient or pre-existing co-morbidities would
influence the censoring. In clinical trials, wewadty face two types of censoring, the pure
administrative date of study end or time of inteemalysis and censoring that occurs during the
conduct of the study, patients drop out voluntasiyfor unknown reasons, e.g. due insufficient
effect of the control treatment (placebo) or sitfeas of the test treatment. A complete
independence of these censored observations fremviints or from covariates is usually
assumed, but may be overoptimistic.

In order to address different assumptions regardiagvill conceptually introduce censoring into
the setting:

Let C denote the r.v. of the censoring process. Theestaining to all actually observed times
(censoring and events) will be denoteddWote thatA = min(T,C ) If censoring and events are

independent, we get for the total process mulipie survivor functions:

P(A>t) =P(T >t)[P(C>t)



This property carries directly over to the Kaplamibst (KM) estimates of the involved survivor
functions:

P(A>t)=P(T >t)[P(C >t)

Note thaté(t) = |5(T >t) is the usual KM-estimate of the survivor functiarile for
caIcuIatinQS(C >1), the role of events and censored observatiomshbs interchanged.

Let us now consider the PEC for the total procestaming toA according to representation (3):

P(X =1|A>t) = P(Ap?;t\lji):l) P(X =1)

By independence dff, C we get:
P(X =1 A>1) = P(T>t|X =1) P(C>t|X=1)
P(T >t) P(C>t)
The assumption of independence of covakasand censoring leads
to P(C>t| X =1) = P(C >t) and hence we get:

[P(X =1)

[P(X =1) = P(X =1|T >1)

In this case the PEC could be estimated basedeoiothl procesé. The simple estimate
presented in the introduction also refers to th& fgrocess and thus could serve as first try sgeca
of independent censoring:

4) W) =gy DX,

joG(t)

A further way of estimation is offered by the reg@atation from (3): Lek(0) =|G—%O)| in

jIG(0)
denote the baseline estimateRfX =1) =¥, (0) and Ieté(t), él(t) denote the KM- estimate of
P(T >t), P(T >t| X =1), respectively, which leads to:

A

Do = 2(®
(5) W, (1) 0 x(0)
In comparing the two estimators, we observe thatd§uires the least assumptions, since there is
no need to assume that the covariate is indepewndeernsoring. A further advantage of (5) is that
we may investigate the censoring process by defiaiREC for censoring:

A _FA’(C>t|X:1)
(6) W (t) = 5C>1 [X(0) .

The estimates derive from KM-estimates with cemgpand events interchanged. Since (4) refers
to the total process, censoring and events carenséparately studied.

The two estimators of the PEC are illustrated gurfe 2, the example shows the results for a
biomarker, where positivity indicates a worse mabprognosis. It is seen that there is a strong
decline in the PEC for events for the estimatowhjch means that indeed positivity for this



parameter leads to more events. At the same tidiiéeaent development is seen for the censor
CPEC. It shows a slight trend to the opposite tima¢ which means that those censored are with
higher probability negatives with regard to therbaker. The trace for the estimator | shows that
we have to deal with variance for larger t, and thaarticular for larger t, the estimates are
affected by the censored events.

Population Evolution Charts Figure 2: Estimates of the
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Interpretation of PECs

The basic goal of a PEC analysis is to investigafgendencies in a nonparametric way. The
overall null-hypothesis is the constancy of the PEE that there is no relationship of events and
covariate. Formally we have:

HO:W, (t):=P(X =1|T >t) =const.

The constant is the value of the PEG=, i.e. P(X =1) =¥, (0) . From the representation (3) we
get the equivalent hypothesggt) = S (t) which is also equivalent t§ (t) = S, (t) , where
S,(t) = P(T >t | X =0) denotes the survivor function fot =0. Thus for testing the overall

constancy of a PEC, we are facing a standard proliiel TE-methodology, namely to compare
two survivor functions, which can be well done rarametrically e.g. by the logrank or
Wilcoxon test.

In order to look a bit deeper into the guts of B&C approach, we note that
S(t) = S, (t) (P(X =1) + S, (t) (P(X =0). By taking the derivatives of the log of this teda,

h(t) = -9/ log{S, (t) P(X =1) + S, (t) [P(X = 0)} = S(t) *{f,(t) [P(X =1) + f, () (P(X = O)}

some algebraic arrangement leads to:



(7) h(t) = hy (t) B, (1) + hy (1) LA Wy (1))

This provides a useful relation for the overaltdua linking it to the PEC and pertaining subgroup
hazards.

Further, we may write the PEC as a function of ulydey hazards forh, (t) —h,(t) # ©

h(t) = hy (t)

8 W =
®) <=L O-ho

The interesting case for a PEC is the deviatiomfoonstancy — and here is the question what is
the meaning of the speed of deviation from constafaking log in the representation (3), and
taking subsequent derivatives, leads to:

log (W, (t)) =log(P(X =1|T >t)) =log S,(t) - log S(t) + log P(X =1)

Wi ®

©) Wi ()

= h(t) - h,(t

The dynamics in the change of the PEC is determiyeal hazard difference. This relation can be
transformed to involve the subgroup hazang$) andh,(t ).

(10) Wi (1) = (Mo (t) — hy (1)) B (1) LA - Wy (1))

Since the PECs are positive functions, only theardszdetermine whether the PEC is going up or
down: wheneveh, (t) exeedsh,(t dhe PEC is going down and vice versa, as locahnaneous

property. PECs will get a monotonic course whenafitbe hazards is dominating the other for all
considered times. The PECs shown in figures 12avety well follow this pattern.

Population Evolution Chart Figure 3: A non-monotonic
651 + 100 | Population Evolution Chart (real
data). A turn point is visible
approximately after 40 days.

r 90
r 80
60
70
r 60

551 [ 80~

3

9% Positives

F 40

r 30

r 20

P10

= % Fceilives
N (%)

45_\“' L B L B L B B L B L
0 100 200 300 400 500

Study Duration (Days)

The PEC shows in figure 3 shows a different pattafter an initial phase with very little
difference in hazards, there was a clear drop, whempositives had more events. After about 40



days the picture changed and the negatives suffesedmore events. Such a pattern fits to the
idea that a positive status is associated withdggoagnosis — however, after a lag time of about 40
days, the therapy is able to change the picturgiage specifically for positives a benefit fromghi
therapy, in a clearly higher degree than for thgatiges. Later, after approx. 200 days, the PEC
becomes more or less constant, which could meanhbse of the negatives, who have survived
up to this point, do no longer suffer from theigagve status.

PECs and Cox’ proportional hazard model

The semi-parametric Cox proportional hazard moelgtesents the gold standard for dealing with
covariates in the TTE framework. It represents plbpone of the most often used statistical
approaches at all — at least in the medical conTéehe crucial assumption of this model is the
proportionality of the hazard functions of the tgroups (X =1and X =0), i.e. their hazard ratio
is independent of time. We will only consider tlmagle case of one binary covariate.

The gist of the difference between Cox model an@ Bpproach is easily stated: the Cox model
looks atP(T >t| X =1), while the PEC featureB(X =1|T >t). PECs study the time

development of the covariate distribution, whildhe Cox-model the covariate influence is
independent of time. The influence of the covariagarametrically quantified by modelling
P(T >t | X =1) with proportional underlying hazards, without regton of the functional form.

It is illustrative to investigate the form of a PE&hen the assumptions of a Cox model hold, i.e
h,(t) = A h, (t) . Then we get from (10):

(11) Wi () = A= A) Thy (t) B, (1) LA - Wy (1))

This means that a PEC from a valid Cox model walilchys be monotonic, forl >1decreasing
and for A < lincreasing. This comes as a necessary conditiotivéovalidity of the Cox model, but
monotonicity of the PEC is not sufficient: by (10ye may haveh, (t) > h,(t) for all t and thus a

monotonic PEC, buh, (t) = A(t) [h, (t) with a non-constant(t) which violates the proportionality
assumption.

In the case of figure 3 it is very doubtful, whetlaesimple Cox model can render reasonable
results. Maybe a piecewise approach can be triembbgidering the data between day 40 and 200
to be fitted by a Cox approach.

The PECs in figures 1 and 2 show a perfect linealinke, what can we read out of this, when we
assume that a Cox model is valid ? To this endyssp that the PEC is really linear:

We®=ali+m
where the intercept isz, =W, (0) = P(X =1) . Using (11) and puttingrz, =1- 77, we find:

1 a

(12) hO(t)zl—/l D(a[ﬂ+771) [{-a O+ 7,)

Thus, a simple parameterization of the PEC leaa@s texplicit functional form for Cox’ baseline
hazard. In order to provide a real example, thelwed parameters were estimated from the data



of the figure2 example. The results were as foltoms= 5086% (obtained from PEC),
a = 4884 (obtained by linear regression), antl= 324(obtained from Cox regression). The

resulting hazard estimates according to (12) asplayed in figure 4. The hazards are almost
constant, the small embedded picture shows thdibasezard with a magnified scale —
demonstrating the slight increase of the hazard thestime span.

Estimated Hazard Functions Figure 4: Estimated hazard functions
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Figure 5 displays survivor functions for the suhgre estimated by various approaches. The fit to
the Cox model is fair (as seen from the estimatediwor functions based oA =  32dight

colors) in comparison to the standard Kaplan Msigrgroup estimate. The almost exponential
survivor functions estimated according to (12) ieva good compromise in these data.

Discussion

The basic idea of PECs was to consider TTE-datasatection process and to look for the time
development of the observed cohort. This leadsitte gnteresting graphical displays which allow



for an alternative view to the TTE-data and couasain particular by detailing the time pattern of
the covariate influence.

The idea of PECs evolved in the year 1996, whercéndio-vascular safety of recombinant
erythropoietin (EPO) for dialysis patients was gmad in a large study pool with initially 3111
patients of 22 clinical trials with variable folleup for up to 4 years. The estimated course of the
hazard for cardio-vascular-death showed a surgyidacline over the follow-up period (see
Moecks et al., 1997). Could this represent a lemmtbenefit of the anti-anemic therapy? Was the
case mix of the population starting the first year3111) comparable to those starting the fourth
year (n=101) ? CV-death could select out thosepist who are anyway prone to this risk,
leaving only comparably healthy patients at latagss. The study pool contained studies with
differing follow-up and different inclusion/exclwsi criteria, with an unclear effect on the
remainder cohort. Therefore the PEC addressetbthleselection process in particular for
baseline covariates which implied a cardiovascaugir: The PECs revealed that there was no
decrease in percentage of patients with pre-egisiM-disease or diabetes, rather these
percentages even raised. The case mix of patiegésding CV-risk was well comparable between
first and fourth year and in between, thus suppgrthat the observed hazard decrease was a long
term treatment benefit (Moecks, 2000).

The second practical instance where PECs provddliusame up in the context of
bisphosphonate therapy for bone morbidity in capegients. The endpoints were bone events
(bone pain, pending fractures etc) which shouldeoeiced by therapy compared to control. Here
premature dropouts presented with issues, sineetwith advanced morbidity under the
(inefficient) control therapy, showed a higher dvaprate, with a downward bias in reported bone
events. PECs revealed that dropout was selectevgended to select out patients with advanced
morbidity. Moreover, in some studies, the dropdtect was different for active and control,
showing that more morbid patients dropped outtagher rate under control (Moecks et al, 2002).
This underlines efficacy but gives standard apgdrea@ hard time to show efficacy.

A important merit of the PEC approach in the cohtdxclinical trials is the possibility to use this
chart for censor events: suppose that we find artae which clearly is associated with the target
events, and in addition a PEC for censoring reveaspendency as well. Then the censoring
could violate the customary assumptions and exbidsin the one or other direction, e.g. as
indicated in the bone event example.

The derivations of this article show that the PE@/as as a basic descriptor in the TTE-
methodology. For instance equation (7) shows tiabwverall hazard and the subgroup hazards are
linked through the PEC — a quite fundamental retgtiinking these intuitive descriptors of the

risk development.

The present article only dealt with the simplestecaf a binary covariate. Displays similar to
PEC'’s can also be defined and used for metric cates. Further a couple of more testing options
exist in order to get a probabilistic evaluatiorttugd PEC-course. The focus of a PEC is on one
single covariate, and the conception does not lsegdneralize to the multiple situation. It is
however possible to treat one binary covariate. feegtment arms) as subgrouping variable and to
compare PECs for a further covariate in one graluisplay (e.g. a PEC for each treatment arm
separately).

In the meantime PECs had been applied in manyahatiyses, in particular in the context of
diagnostic markers and biomarkers in oncology, pliag many fruitful insights. A further
development of this methodology appears promisimgtfe TTE-field.



Computations of this paper were based on SAS-adwggcro for the PEC-estimal@,, (t) can be
obtained from the authors upon request.
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